Monday, April 28, 2014

滑板滑雪物理學 (續) The Physics Of Snowboarding (cont.)

延續上一篇的說明...


http://www.real-world-physics-problems.com/physics-of-snowboarding.html

如何在割雪轉彎 (carving turn) 下保持平衡

先前提到的,理想的轉彎是以完全割雪轉彎的方式來完成,這樣子可以把因轉彎而損失的速度降到最低。以下來分析割雪轉彎中各種力的平衡。


首先是定義座標與代號,由重力方向造成的效果隨滑雪者的行進方向改變。

 schematic for orientation of snowboarder on slope
  • g 重力加速度,地球上是 9.8 m/s^2
  • alpha 是坡度,零度代表水平面
  • beta 是雪板行進方向與水平線的交角,水平線與重力方向垂直
  • R_T 是轉彎的旋轉半徑
  • v 是滑雪者切線方向的速度,指向滑雪者的行進方向。
這裡我們定義 x-y 平面,讓 y 軸垂直於坡面,而 x 軸在坡面上與行進方向垂直。
(為了簡化起見,這裡我們假設坡面是一個平面,忽略三維的效應) 再來我們看相對於滑雪者的座標規劃。

 free body diagram of snowboarder on slope
  • theta 是坡面上的 x 軸與滑雪者身體重心的交角,也就是滑雪者傾斜與雪面的交角。
  • G 是滑雪者的質量中心,這包含了滑雪者與雪板,整個視為一個剛體。
  • P 是雪板與雪面接觸的近似點。
  • L 是重心 G 與 P 點的距離
  • a_c 是位於 G 點的向心加速度,方向指向 x 軸向迴轉半徑的圓心。
  • F_1 是接觸雪面 P 施與滑雪者的支撐力,在 x 軸的分量。
  • N_1 是接觸雪面 P 施與滑雪者的支撐力,在 y 軸的分量。
這裡滑雪者 G 的瞬時速度 v 是指出紙面(螢幕)的。

在質心 G 在總力平衡的條件下,y 軸方向的總力(加速度)為零。也就是說,當滑雪者轉彎的時候,y 方向的總力為零可以表示為:

N_1 - m g cos(alpha) = 0  (1)

這裡 m 是滑雪者與雪板的質量總和。考慮牛頓第二運動定律,在 x 軸上:

F_1 = m g sin(alpha) cos(beta) = m a_c  (2)

而向心加速度可以表示成:

a_c = v^2 / R_T

將之代換到 (2) 之中,我們可以將整個系統近似成一個轉動慣量平衡,也就是對於質心 G 而言總角動量為零。可以用以下數學式表示:

F_1 sin(theta) L - N_1 cos(theta) L = 0  (3)

結合 (1) - (3) 式,我們可以得到:

tan(theta) = g cos(alpha) / g sin(alpha) cos(beta) + v^2/R_T

請注意這裡質量 m 與長度 L 已經不需要了,因為他們已經在式子中約掉了。

這個式子要怎麼用呢?舉個簡單的例子:

當某個瞬間 alpha = 20 度(這要算紅道還是藍道?),beta = 60 度,速度 5 m/s (時速 18 公里),雪板側邊的弧度半徑 14.8 公尺,雪板與雪面交角 phi = 30 度。這樣子傾角 theta 應該是多少呢?

要達到完全割雪轉彎 R_T = R_SC,所以  R_T = R_SC cos(phi) = 14.8 cos(30) = 12.82 m,也就是 theta = 68.5°

當在坡面上滑雪的時候,在轉彎的過程中迴轉半徑 R_T 不會是一個定值,會有變動是正常的。尤其是重力的分量對於滑雪者在轉彎的軌跡中,如同 (2) 所示,beta 會隨之改變。自然地,滑雪者的傾角,還有雪板與雪面的交角 phi 也要配合調整,最後達到改變 R_T 的目的。這使得滑雪的物理分析變得複雜。

下一個部份,我們要來分析這個雪板切入雪面的角度,來避免在雪上發生側滑。
在此之前,有一些預備知識需要先來了解。

避免雪板在雪面上側滑

這裡有兩個雪板物理學考慮的點:滑雪板如何會發生側滑,還有如何來避免。
首先,當雪板在一個水平而且平坦的雪面上時,只要滑雪者腳對雪板的施力,
與雪板的平面成90度,就可以避免發生側滑。這是由於雪面與雪板間的摩擦力非常小,只要有一點點橫向的分力,就會使得雪板(側向)滑動。

第二點是當雪板在斜坡雪面上時,滑雪者必須以一個傾角將雪板壓入雪中,才能防止滑動。如此一來,滑雪者施在雪板上與雪板面平行的分量,成為是指向雪中的力量。

我們以下面的圖示來說明:



force applied to snowboard on sloped snow surface to avoid slipping

滑雪者施力於雪板,避免在斜坡上發生滑動,其中:
  • phi 是滑雪板與雪面的傾角
  • delta 是施力方向與雪面的交角
  • psi 是施力方向與滑雪板面的交角
  • F_R 則是滑雪者的腳施與滑雪板的合力
要避免滑動, psi 角必須大於或等於90度。這也就是說 F_R 力平行於滑雪板面的分量,必須為零(當 phi = 90度),或是指向雪中(往山峰或迴轉中心),也就是往右(當 phi > 90 度),如此一來雪面就像是一面高牆,擋住雪板滑動。

然而當 psi 角小於 90 度時,F_R 在平行於滑雪板面的分量,會往迴轉外側(往山谷),也就是往示意圖的左方。(將雪板帶離雪板壓出的溝)請注意我們這裡忽略了雪板本身的重量,所以實際上的關鍵角度將不同於90度。

就地形而言,要避免側向滑動,delta 角必須大於或等於 90 - phi。

我們可以用上一節的簡單例子,來驗證前述的物理。

首先必須檢查(滑雪者的腳)施力 F_R 與滑雪板的角度。這裡忽略相對較小的滑雪板質量,這力等於 F1 與 N1 施予滑雪板的大小,但方向相反。由於系統是旋轉平衡(沒有旋轉/力矩),也就是說 F1 與 N1 都會通過質心 G 點。即 delta 角相同於前面的 theta 傾角。當 delta = 68.5度,是大於 90 - phi = 60 度的。因此滑雪板不會發生側滑。

下一節我們將討論關於空中特技的物理。

(待續)

No comments: